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Abstract

Elastic wave scattering at the free end of a cylinder due to an incident monochromatic wave is investigated. The
cross-section may have an arbitrary geometry with any number of distinct elastic rectilinear anisotropic materials

comprising its planar pro®le. The governing equations are based on a semi-analytical ®nite element method in which
the cross-sectional behavior is modeled by general two-dimensional ®nite elements with the axial dependence and
time left unspeci®ed at the outset. First, all the modal data for the cylinder are established. Two eigenproblems are

posed for this purpose, that are obtained by inserting a wavelike solution form into the governing equations. These
eigenproblems allow all propagating waves and end modes for the cylinder to be determined. Propagating modes
are traveling waves with energy transport capabilities, while the end modes are standing vibrations which, in

contrast, do not transport any energy into the interior of the cylinder. These eigendata are the basis for representing
the wave re¯ection phenomenon at the free end. The amplitudes of the traveling waves and end modes that satisfy
traction-free end conditions may be determined by least-squares minimization or by a virtual work method. Four
cylinders with di�erent cross-sectional geometries were considered to illustrate the analysis procedure and reveal

some physical insight into the frequency dependent wave re¯ection phenomena in them. # 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

In this paper, we consider the re¯ection of a monochromatic wave train impinging upon the free end
of a semi-in®nitely long prismatic cylinder. The proposed analysis technique can accommodate a
cylinder with an arbitrary cross-sectional shape that is made up of di�erent anisotropic materials which
are perfectly bonded at all common interfaces. This general problem enjoys a crucial role in non-
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destructive evaluation (NDE) methods, which rely on wave scattering data to locate and estimate the

size and/or extent of cracks, voids and other ¯aws in them. Herein, we restrict our scope to the end

re¯ection problem of undamaged bars, as such a study is a required initial step toward the ultimate goal

of supporting NDE methods.

When a traveling monochromatic wave of frequency o arrives at the free end of a cylinder, its

incidence on this surface causes a scattering phenomenon that involves re¯ected traveling waves as

well as a host of end vibrations or end modes. Only the traveling waves have the capability of

carrying the incident wave energy back into the interior of the cylinder. However, the incident wave

and all possible re¯ected traveling waves by themselves do not in general satisfy traction-free end

conditions. These traveling waves must be supplemented by a series of end modes in order to have

a traction-free end. End modes are associated with purely imaginary and/or complex wave numbers

k in the axial wave form eikz where z is the propagation axis, so that their mathematical wave

forms show monotonically and damped sinusoidal decay into the interior. These modes also lack the

capacity of conducting any energy into the interior of the cylinder.

Historically, the study of vibrations and waves based on three-dimensional elasticity began with

Pochhammer (1876) and Chree (1889) who independently gave the governing equations, outlined the

solution form and generated the frequency equation for a homogeneous, isotropic circular cylinder.

Extraction of roots from this frequency equation laid fallow for more than ®fty years before

Bancroft (1941), Hudson (1943) and Davies (1948) systematically explore it to determine the circular

frequencies or phase velocities for axisymmetric traveling waves. At roughly the same time period to

these circular cylinder studies were the investigations of plane strain vibrations in homogeneous,

isotropic plates by Rayleigh (1888) and Lamb (1917). Most of the earlier work was concerned with

the spectra for propagating waves. End vibrations were not investigated for about a half century

after Rayleigh presented his well-known frequency equation for plane strain vibrations. Much credit

for our understanding of end vibrations is due to Mindlin and his colleagues, who were able to

de®ne the entire spectra from the Rayleigh±Lamb frequency equation. An account of this

development was given by Mindlin (1959). In addition, Onoe et al. (1962), Pao and Mindlin (1960)

and Pao (1962) also were able to de®ne the frequency spectra for the axisymmetric and ¯exural

modes of a homogeneous, isotropic circular cylinder. Aside of these geometries, very little data are

available for cylinders of other cross-sectional shapes. The monograph of Redwood (1960) contains

many references up to its publication date for other cross-sections.

In the two subsequent sections, the mathematical preliminaries are set forth and the governing

equations of motion for a cylinder of arbitrary cross-sectional shape and material composition are

derived. These equations describe the behavior in which one part is modeled by ®nite elements and

the other is represented analytically. This formulation for general cross-sectional shapes was

discussed previously by Dong and Kazic (1989). Then, the tasks of determining the complete spectra

for this cylinder are addressed. A two-parameter eigenproblem is generated by substituting the

solution waveform into the governing equations in which either the frequency o or the axial wave

number k can serve as the eigenvalue parameter. Adopting the frequency as the eigenvalue

parameter gives an eigenproblem for all of the propagating modes. The second eigenproblem with

the axial wave number k as the eigenvalue enables all of the end modes of a given frequency o to

be determined. Next, the wave re¯ection analysis is discussed; it is based on representing the

re¯ected motion by a modal composition of the propagating waves and end modes. A least-squares

method or a virtual work method due to Wu and Plunkett (1967) enables the amplitudes of all

these modes to be determined. Four cross-sections are studied to illustrate the wave re¯ection

analysis procedure.
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2. Preliminaries

Consider a long prismatic cylinder with an arbitrary cross-sectional shape. This cylinder is composed
of possible distinct anisotropic materials that are perfectly bonded together along its entire length.
Adopt rectangular coordinates (x, y, z ) with the z-axis running along its axis and the (x, y ) axes
spanning its cross-section, and let t denote time. The formulation of the governing equations is based on
linear three-dimensional elasticity. The mechanical variables are the displacement u, stress sss, and strain
eee with components

u�x, y, z� � �u, v, w�T �1�

sss�x, y, z, t� � �sxx, syy, szz, syz, sxz, sxy �T �2�

eee�x, y, z, t� � �exx, eyy, ezz, gyz, gxz, gxy �T �3�

In anticipation of the semi-analytical ®nite element formulation, the linear strain displacement equations
are written in split operator form according to di�erentiations with respect to the cross-sectional
variables (x, y ) and to the axial coordinate z, i.e.,

eee � Lu � ÿLxy � Lz

�
u �4�

where
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The constitutive relation for each distinct material comprising the prismatic cross-section has the form

sss � Ceee �6�
where the symmetric (6 � 6) C matrix contain the rectilinear elastic, anisotropic moduli.

The governing equations of motion for this beam are derived by Hamilton's principle

d
�t1
t0

�
Tÿ �U� VE �

	
dt � 0 �7�

where T is the kinetic energy, U the strain energy and VE the potential energy of external forces. The
kinetic energy in terms of the velocity vector Çu and unit mass density r is of the form
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T � 1

2

� � �
B

ÇuTrrr Çu d�vol� with rrr �

2664
r � �
� r �
� � r

3775 �8�

The strain energy U is given by

U � 1

2

� � �
B

eeeTCeee d�vol� �9�

The potential energy VE herein consists of applied traction acting on some generic cross-section and it is
given by

VE � ÿ
� �

uTsssf d�surf � �10�

where sssf denotes the normal and shear tractions on the cross-sectional surface.

3. Semi-analytical ®nite element governing equations

A semi-analytical ®nite element method is used in our analysis with discretization of bar's cross-
section into a system of planar elements. In this semi-analytical ®nite element version, the axial and time
dependencies of the displacement vector u are regarded as unknowns at the outset, leaving the (x, y )
dependence for modeling by interpolation functions. Separation of the dependent variables with one
part stated in terms of an assumed ®eld occupies in an intermediate position between an exact solution
and a Ritz/Galerkin technique. This procedure is due to Kantorovich and Krylov (1958).

For a generic element of the ®nite element discretization, the kinematic ®eld takes the form

u � n�x, y�ue�z, t� �11�

where n contain the interpolation functions and ue denote the array of nodal displacement variables. In
our computer codes for this problem, both six-node triangular and eight-node quadrilateral elements as
shown in Fig. 1 are available for modeling the cross-section. Second-order polynomials are used in both
types of elements; quadratic interpolations in area coordinates for the triangle and second-order
serendipity interpolations for the quadrilateral. In the formulation of the element matrices,
isoparametric ®nite element methodology is used. Since the essence of these interpolations are well
documented and the details of Gaussian quadrature for isoparametric element formulations follow a
standard well-de®ned path, the details pertaining to this aspect of the formulations requires no
elaboration. In the formulation of the governing equations, only the formal mathematical steps are
given.

The substitution eqn (11) into eqn (4) gives deformation measures in terms of the nodal variables as

eee � b1ue � b2ue,z �12�
where

b1 � Lxyn�x, y�; b2 � Lzn�x, y� �13�

The components of the b1 and b2 matrices are
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b1 �

2666666666664

n,x � �
� n,y �
� � �
� � n,y

� � n,x

n,y n,x �

3777777777775
; b2 �

2666666666664

� � �
� � �
� � n

� n �
n � �
� � �

3777777777775
�14�

Substituting eqns (11) and (12) into all the energy expressions in Hamilton's principle (7) yields

d
�t1
t0

�
1

2

� � ��
ÇuT
e nTrrrnÇue ÿ uT

e bT
1Cb1ue ÿ uT

e bT
1Cb2ue,z ÿ uT

e,zb
T
2Cb1ue

ÿ uT
e,zb

T
2Cb2ue,z

�
dx dy dz�

� �
uTsssf dx dy

�
dt � 0

�15�

Carrying out the integration over the cross-sectional area of the element gives

d
�t1
t0

�
1

2

��
ÇuT
e mÇue ÿ uT

e k11ue ÿ uT
e k12ue,z ÿ uT

e,zk21ue ÿ uT
e,zk22ue,z

�
dz� uT

e f

�
dt � 0 �16�

where

k11 �
� �

bT
1Cb1 dx dy; m �

� �
nTrrrn dx dy

Fig. 1. Diagrams of six-node triangular and eight-node quadrilateral elements.
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k12 � kT
21 �

� �
bT
1Cb2 dx dy; f �

� �
nTsssf dx dy

k22 �
�

bT
2Cb2 dx dy �17�

The total energy for the entire bar is found by summing the energies of the individual elements
comprising the model of the cross-section and the counterpart of eqn (16) for the entire cross-section
takes the form

d
�t1
t0

�
1

2

��
ÇU

T
M ÇUÿ UTK11Uÿ UTK12Uz ÿ UT

z K21Uÿ UT
z K22Uz

�
dz� UTF

�
dt � 0 �18�

where U denotes the assembled nodal variables and the assembled sti�ness and mass matrices are merely
the superpositions of the N individual element contributions, each of which is denoted by subscript n.

K11 �
XN
n�1

k11n; K12 � KT
21 �

XN
n�1

k12n; K22 �
XN
n�1

k22n; M �
XN
n�1

mn; F �
XN
n�1

fn �19�

Since conforming ®nite elements are used, nodal kinematic continuity assures full inter-element
continuity of all elements at common interfaces.

Carrying out the variation indicated by eqn (18) leads to the following governing equation of motion
for the anisotropic bar.

K1Uzz ÿK2Uz ÿK3UÿM ÈU� F � 0 �20�
where

K3 � K11; K2 � K12 ÿK21; K1 � K22 �21�
Observe that K1 and K3 are symmetric and K2 is antisymmetric. Governing eqn (20) will be used to
establish all possible free vibration modes of the bar.

4. Propagating waves and end modes

For free vibrations, suppress the nonhomogeneous term in eqn (20) and seek solutions of the form

U � U0e
i�ot�kz� �22�

where o is the circular frequency, k is an axial wave number, and U0 is the vector of nodal
displacements. Substituting eqn (22) into the homogeneous form of eqn (20) gives�

ÿ k2K1 ÿ ikK2 ÿ K3 � o2M
�
U0ei�ot�kz� � 0 �23�

As the exponential factor does not vanish for all z and t, then�
k2K1 � ikK2 �K3 ÿ o2M

�
U0 � 0 �24�

which is an algebraic eigenproblem where either o2 or k may be assigned the role of eigenvalue. These
two cases of o2 or k as the eigenvalue are discussed as follows.
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4.1. Propagating waves

By assigning real values to k and taking o2 as the eigenvalue, eqn (24) admits eigendata for the
propagating or traveling waves. Due to the symmetric and antisymmetric characteristics of the sti�ness
matrices kis, eqn (24) is a hermitian system which guarantees real o2s as eigenvalues. Its complex nature
can be rendered real by recasting it as

KTV0 � o2MTV0 �25�
where

V0 �
�

U0

ÿiU0

�
; KT �

�
K3 � k2K1 ÿkK2

kK2 K3 � k2K1

�
; MT �

�
M �
� M

�
�26�

Note that both KT and MT are symmetric and positive-de®nite. The solution to eqn (25) may be stated
as a transformation to normal coordinates x.

V0 � FFFx �27�
where FFF is the modal matrix. The columns of FFF satisfy the following orthogonality conditions.

fH
mMTfn � dmn; fH

mKTfn � dmno2
n �28�

with superscript H denoting conjugate transpose. Based on the form of V0 in eqn (26), the roles of the
real and imaginary parts of the upper half of the modal matrix FFF are interchanged in the lower half.
But since an eigenvector is determined within an arbitrary constant, then without loss of generality, the
upper and lower halves of the modal matrix FFF can be cast as the real and imaginary parts of the
eigensolution of U0, i.e., U0��FFFr� iFFFi �x or

V0 �
�
FFFU

FFFL

�
x �

�
FFFr

FFFi

�
x �29�

Orthogonality relations (28) expressed in terms of real and imaginary parts of any two columns
(frm, fim) and (frn, fin) of (FFFr, FFFi) and the mass and sti�ness matrices M and Kis take the form

fT
rmMfrn � fT

imMfin � dmn

fT
rm

ÿ
K3 � k2K1

�
frn � fT

im

ÿ
K3 � k2K1

�
fin � k

ÿ
fT
imK2frn ÿ fT

rmK2fin

� � dmno2
n �30�

Eigensystem (25) yields o2
i in pairs, the eigenvectors of which are distinct, but they represent identical

waveforms that are separated by a p=2 phase. By systematically varying k over a range of real wave
numbers, eigensystem (25) establishes the dispersion relation for the bar.

4.2. End modes

If o2 is assigned values in algebraic eigensystem (24), k becomes the eigenvalue. To render the
eigensystem completely real, set

k � ÿig �31�
in eqn (24) and it becomes a quadratic eigenvalue problem
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g2K1U0 ÿ gK2U0 ÿ
ÿ
K3 ÿ o2M

�
U0 � 0 �32�

This equation may be reduced to ®rst-order form by introducing an auxiliary variable U1 as

U1 � gU0 �33�

With this auxiliary variable, the algebraic eigensystem can be recast as

AV � gBV �34�

where

V �
�

U0

U1

�
�
�

U0

gU0

�
;

A �
� � K3 ÿ o2M

K3 ÿ o2M K2

�
; B �

�
K3 ÿ o2M �
� K1

�
�35�

Eigenproblem (34) admits both real and complex eigenvalues that describe end modes whose vibratory
amplitudes decay exponentially into its interior from the free end of a semi-in®nitely long cylinder. Real
eigenvalues gs occur in pairs �2gr�, and they decay monotonically in the3z-directions. Complex
eigenvalues gs occur in complex conjugate pairs �2gr2igi � and they decay sinusoidally in the3z-
directions. There is an exceptional case where gs occur as a purely imaginary pair �g �2igi �, and these
roots represent propagating waves and do not ®t the de®nition of an end mode. Nevertheless,
eigensystem (34) admits a ®nite number of them for any given o2. In view of eqn (31), the real and
imaginary parts of the eigenvalue g in terms of k are

k �2gi3igr �36�
For each eigenvalue gm � ikm of eqn (34), there are right-handed and left-handed eigenvectors, fm

and cm, respectively, that satisfy�
A�o� ÿ ikmB

�
fm � 0;

�
AT�o� ÿ ikmB

�
cm � 0 �37�

These eigenvectors satisfy the bi-orthogonality relations

CCCTBFFF � diag�Bn �; CCCTAFFF � diag�Bnikn� �38�

In view of eqn (35) de®ning the lower half of V as the product of the eigenvalue and its upper half, each
set of right-handed and left-handed eigenvectors can be expressed completely in terms of its upper half
eigenvectors �fum, cum� and eigenvalue as

fm �
24 fum

----------
ikmfum

35; cm �
24 cum

----------
ikmcum

35 �39�

Then, bi-orthogonality relations (38) take the form

cT
um

ÿ
K3 ÿ o2M

�
fun ÿ kmknc

T
umK1fun � dmnBn
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�ikn � ikm�cT
um

ÿ
K3 ÿ o2M

�
fun ÿ kmknc

T
umK2fun � dmnBnikn �40�

5. Re¯ection of traveling wave

Consider a semi-in®nitely long bar occupying the region (zR0) with the cross-sectional plane z � 0
traction-free. Let a monochromatic wave train of frequency o advance from z � ÿ1 toward the origin.
The wave form of the incident wave is

Uinc�z, t� � Uinc�z� eiot � AincU0 eÿikincz eiot �41�
where U0 � fun�inc� is a right-handed eigenvector representing an admissible propagating mode with
amplitude Ainc and wave number kinc. Its arrival at the traction-free end causes a re¯ection phenomenon
that may involve one or more opposite traveling waves as well as a host of end modes. Both types of
motions are needed to satisfy traction-free end conditions. Of the complete set of eigenmodes discussed
in the previous section, only half are admissible in the end re¯ection problem for the region (zR0), i.e.,
those of the products ikns whose real part is positive. The products ikns with negative real part involve
motions exhibiting exponential growth in the negative z-direction and must therefore be suppressed in
order to bound the displacements at z � ÿ1. In what follows, the exponential time factor eiot is
omitted without loss of generality.

Let the re¯ected motion be written in terms of the upper right-handed eigenvectors of eqn (39) as

Uref�z� �
XN
n�1

Anfuneiknz �42�

where all admissible propagating waves and end modes are included in the sum and Ans denote the
undetermined coe�cients of the re¯ected modes. Evaluating eqn (42) at z � 0 gives

Uref jz�0 � GA �43�
where the columns of G are

G � �fu1, fu2, fu3, . . . , fuN

� �44�

AT � �A1, A2, A3, . . . , AN � �45�
The sum of the stresses of the incident wave and re¯ected motion must be zero for a traction-free
surface z � 0. The relevant stress components at discrete points on the free surface due to the re¯ected
motion, which are based on eigenvectors FFFus, are evaluated using strain±displacement relation (12) and
constitutive law (6). They are denoted by

Rref jz�0 � ÿFA �46�
where F contain the modal columns fjs

F � �f1, f2, f3, . . . , fN � �47�
with each f j denoting the following traction components.

fT
j � �sxz1j, syz1j, szz1j, sxz2j, syz2j, szz2j, . . . , sxzNj, syzNj, szzNj � �48�
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The surface stresses due to the incident wave on the plane z � 0 are therefore

Rincjz�0 � FincAinc �49�
The coe�cients As are calculating by insisting that the surface stresses of both incident wave and the
re¯ected motion vanish on the plane z � 0.

R � Rincjz�0 � Rref jz�0 � 04FincAinc ÿ FA � 0 �50�
Wu and Plunkett (1967) presented two methods for determining these coe�cients.

5.1. Minimization of the residual boundary values

This is a least-squares method in which a norm is de®ned. The solution for the coe�cients take the
form

A � Ainc

� �
FHF dA

�ÿ1� �
FHFinc dA

�
�51�

5.2. Virtual work method

By enforcing the virtual work on the free end, i.e.,

dUHR � 0 �52�
where

U � Uincjz�0 � Uref jz�0 �53�
so that the variation of U involves only the re¯ected motion, i.e.,

dU � dUref �54�
Substituting eqn (54) into the virtual work expression (52) gives

A � Ainc

� �
GHF dA

�ÿ1� �
GHFinc dA

�
�55�

In carrying out the end conditions, the stresses and displacements are evaluated at the same Gaussian
quadrature points at those used in the formation of the element matrices.

6. Energy conservation

The sum of the time-average values of energy ¯ux of the re¯ected traveling waves must be equal to
that of the incident wave. The conservation principle can be used to measure the accuracy of the
amplitude coe�cients of the re¯ected motion. Note that only propagating waves are capable of
transporting energy into the interior of the bar.

The time-average energy ¯ux Ej for the j-th traveling wave and that of the incident wave Einc are
given by
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Ej � i

�
ojAjj2

�
fT
j

�fuj dA

�
; j � 1, 2, . . . , Np �56�

Einc � i

�
ojAincj2

�
FT
i

ÅU0 dA

�
� Im

�
ojAincj2

�
FT
i

�fu�inc� dA

�
�57�

where an over-bar indicates complex conjugation and Np denotes the number of propagating waves. It is
noted that the calculation of the energy ¯ux by eqn (56) with a propagating wave will result in a real
value for the ¯ux. Using an end mode in the same formula yields a purely imaginary or complex value
for k, as end modes conduct no net energy ¯ux into the interior of the bar.

The total energy ¯ux of the re¯ected traveling waves is therefore

Eref �
XNp

j�1
Ej �58�

Energy conservation requires that Einc � Eref , so that

XNp

j�1
Ej � Einc or

XNp

j�1

Ej

Einc

� 1 �59�

A calculation of this type can be used to measure the accuracy of the analysis.

7. Analysis of various cross-sectional geometries

To illustrate wave re¯ection calculations, four di�erent cross-sectional geometries were considered.
The properties and geometries of the are summarized as follows.

1. Homogeneous, isotropic solid circular cylinder; Poisson's ratio n � 0:25, and radius R.
2. Homogeneous, isotropic rectangular bar; Poisson's ratio n � 0:30, and height to width ratio

H=W � 1=2.
3. Three layer +308/ ÿ308/ +308 ®ber composite rectangular bar; height to width ratio H=W � 1=2

with properties given by eqn (60).
4. Two layer 2308 ®ber composite rectangular bar; height to width ratio H=W � 1=2 with properties

given by eqn (60).

These cross-sections are shown in Fig. 2; on the left side are the cross-sectional shapes and on the right
side are the ®nite element models with the total number of corner and mid-side nodes indicated. The
®ber composite material properties of cross-sections (3) and (4) are

EL � 139:274 GPa; Et � 15:167 GPa;

GLT � 5:861 GPa; GTT � 6:268 GPa; nLT � nTT � 0:21 �60�

The corresponding elastic moduli in C at ®ber orientations of2308 with respect to the z-axis are
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�C�2308�

2666666666664

15:9860 3:6078 3:9233 30:2732 � �
3:6078 23:7300 27:5875 313:4923 � �
3:9233 27:5875 86:2310 340:6352 � �

30:2732 313:4923 340:6352 29:3675 � �
� � � � 5:9628 �
� � � � � 6:1663

3777777777775
GPa

�61�

All results are presented in term of a normalized frequency O and a dimensionless wave number �k given

Fig. 2. Diagrams and ®nite element models of the four examples.
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by

O � o
oref

; �k � kLtypi �62�

where oref is the reference frequency and Ltypi denotes a characteristic dimension of the cross-section.
The reference frequency and typical length Ltypi for the four cross-sections are

(1) (2) (3) (4)
Cross-section Circle Rectangle Three layer beam Two layer beam

o2
ref �l� 2m�=rR2 m=rH 2 ET=rH 2 ET=rH 2

Ltypi R H H H

7.1. Homogeneous, isotropic, solid circular cylinder

This con®guration was considered because abundant extant data enable us to assess the accuracy of
the present results. Axisymmetric spectral data for both propagating modes and end vibrations were
®rst given by Onoe et al. (1962), and ¯exural spectral data were presented by Pao and Mindlin (1960)
and Pao (1962). The axisymmetric wave re¯ection problem was studied analytically by Gregory and
Gladwell (1989) and by means of 1-D semi-analytical ®nite elements by Rattanawangchareon et al.
(1994). Present axisymmetric wave re¯ection results, based on 2-D ®nite element capabilities, were
compared with those in these two references. Flexural wave re¯ection results are also given; but to the
best of the author's knowledge, no such results as yet have appeared.

One-quarter of the circular cross-section was modeled as shown in Fig. 2. Doubly symmetric
interface conditions must be enforced on the two orthogonal structural planes for axisymmetric
motions. In contrast, for ¯exural motions, symmetry/antisymmetry interface conditions are required. It
is mentioned that for circular geometries, cylindrical coordinates are normally used. The axisymmetric
and ¯exural results of the Gregory and Gladwell (1989) and Rattanawangchareon et al. (1994) are
given in terms of cylindrical coordinates, i.e., for circumferential mode number n � 0 and n � 1.
Herein, the computer code can treat general two-dimensional cross-sections; the ®nite element model
with either symmetry/symmetry or symmetry/antisymmetry interface conditions are capable of
admitting other behaviors exhibiting these conditions in addition to the axisymmetric and ¯exural
motions.

The spectral branches for lowest seven propagating modes extracted from eqn (25) using doubly
symmetric interface conditions are shown in Fig. 3 (the sym±sym plot). Of these seven modes, only
three are axisymmetric (i.e., n � 0) while the others are spectral curves for circumferential mode
numbers n � 2, 4. These modes are admissible because they also satisfy symmetry/symmetry interface
conditions, but they should not be excited by an incident axisymmetric wave. In all calculations, the
lowest axisymmetric mode was adopted as the incident wave. The energy distribution of the various
re¯ected propagating modes is shown in Fig. 4 (the sym±sym plot) for normalized frequency range
�1:8ROOOR2:4�, i.e., the same used by Gregory and Gladwell (1989) and Rattanawangchareon et al.
(1994). Fifty end modes based on eqn (34) together with all of the admissible propagating modes
(including those modes with n � 2, 4) were used in the calculation of the amplitudes of the re¯ected
modes and energy ¯uxes. The broken vertical lines in Fig. 4 marks the frequency where an additional
propagating wave can be cut on. There is good visual agreement between the present results in Fig. 4
with those of Gregory and Gladwell (1989) and Rattanawangchareon et al. (1994). Even though non-
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axisymmetric modes, n � 2, 4, were submitted to the analysis procedure for representing the re¯ected
motion, none of them were selected as their computed amplitudes were essentially zero. Observe that
as frequencies approached regions where an additional propagating wave can be cut on, the energy
¯ux lines behave quite dramatically. It is mentioned that ten end modes were su�cient to capture the
behavior in this frequency range with the virtual work method. By least squares, the comparable
accuracy required essentially all ®fty end modes. The same observation was made by
Rattanawangchareon et al. (1994). It is noted that for a spectral branch with a dip where the
slope is negative, such as the portion (0, 2a ) of the branch designated as (0, 2a ) and (0, 2b ) of
Fig. 3, the group velocity is negative. In this situation, the data from the mirror image branch (i.e.,
the one symmetric about the frequency axis) must be used. This situation also occurs in the other
examples.

The lowest eight spectral branches with symmetry/antisymmetry interface conditions are shown in Fig.
3 (the anti-sym plot). In this case, four of them are not ¯exural, i.e., they are not for n � 1 but for
circumferential mode numbers n � 3, 5, which are admissible since they also satisfy symmetry/
antisymmetry interface conditions. Using the lowest ¯exural mode as the incident wave, the energy
distribution of the re¯ected traveling waves in the frequency range (0.6 R O R 3.3) is plotted in Fig. 4
(the anti-sym plot). Again, the analysis procedure did not select any of the propagating waves with
circumferential mode numbers n � 3, 5 for the re¯ected motion.

Fig. 3. Frequency spectra for homogeneous, isotropic, circular cylinder.
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7.2. Homogeneous, isotropic, rectangular bar

For a homogeneous, isotropic rectangular bar with height to width ratio H=W � 1=2, only one fourth
of it requires discretization as shown in Fig. 2 due to its doubly symmetric geometry. Imposing various
combinations of symmetry/antisymmetry interface conditions on these two symmetry planes decomposes
the total problem into four separate and uncoupled waveforms: (1) extension (sym/sym), (2) and (3)
¯exure (sym/antisym and antisym/sym) about the two principal axes and (4) torsion (antisym/antisym).

For the rectangular cross-section, the only available analytical spectral data are that for propagating
waves; see Kynch (1957), Nigro (1966) and Fraser (1969). Finite element results for propagating waves

Fig. 4. Energy distributions in re¯ected waves for homogeneous, isotropic circular cylinder.
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Fig. 5. Frequency spectra for homogeneous, isotropic rectangular cylinder.
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were ®rst given by Aalami (1973). Dong and Kazic (1989) gave some end vibration data for extensional
motions in a homogeneous, isotropic square bar; their results were based on semi-analytical two-
dimensional ®nite elements (i.e., same as the present formulation). Beyond these investigations, there
does not appear to be any other data.

Frequency spectra for lowest propagating modes of these four waveforms (extensional, ¯exural and
torsional waves) are shown in Fig. 5. On these plots are marked the frequency ranges that are under
consideration in the re¯ection problems. In each case, the lowest traveling wave in each of the four
waveforms was taken as the incident wave and ®fty end modes were used. The re¯ection results in the
form of division of energies in the various re¯ected traveling waves are presented in Fig. 6a for
extensional and torsional motions in the range (2.0 R O R 5.5) and Fig. 6b for the two ¯exural motions

Fig. 6a. Energy distributions in re¯ected extensional and torsional waves in homogeneous, isotropic rectangular cylinder.
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(1.0 R O R 6.0). Enlarged portions of the plots in Fig. 6b where the various curves are crowded are
given in Fig. 7 in the ranges of (3.9 R O R 4.2) and (4.2 R O R 4.8) in order to show the re¯ected
¯exural energy distributions more clearly. Again, the broken vertical lines in the re¯ected energy
distributions marks the frequency at which another propagating wave can be cut on.

7.3. Three layer +308/ÿ308/+308 ®ber composite rectangular bar

For three layer rectangular bar with an overall height-to-width ratio of H=W � 1=2 shown in Fig. 2
with properties given by eqn (61), the horizontal mid-plane is a symmetry plane. Thus, only half of the

Fig. 6b. Energy distributions in re¯ected ¯exural waves in homogeneous, isotropic rectangular cylinder.

H. Taweel et al. / International Journal of Solids and Structures 37 (2000) 1701±17261718



cross-section requires discretization as shown in Fig. 2. Symmetric and antisymmetric motions with
respect to the horizontal mid-plane can be studied separately by imposing symmetry and antisymmetry
displacement conditions about it.

Symmetric motions about the horizontal mid-plane include extensional waves and ¯exural waves
about the y-axis. In this cross-sectional pro®le, these two waveforms are coupled, i.e., they cannot occur
independently of each other. The frequency spectra of the symmetric modes are shown in Fig. 8. In
labeling the lowest two branches, the descriptors bend±ext and ext±bend were used, in which the ®rst
term in the hyphenated expression designates the predominant behavior of that branch. The higher
modes also exhibit coupling, but no attempt was made here to assign labels to them in accordance to
their predominant characteristics. In the higher modes, their waveforms are somewhat intricate and it is
not a straightforward matter to identify their predominant behavior from the displacement modal
pattern. Therefore, they are just numbered sequentially. In the wave re¯ection studies, two cases of

Fig. 7. Enlarged views of energy distributions in re¯ected ¯exural waves in homogeneous, isotropic rectangular cylinder.
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incident waves were considered using one of the two lowest waveforms, viz, (1) ®rst (bend±ext) mode
and (2) second (ext±bend) mode. Depending on the frequency, 100±150 end modes were used. The
re¯ected energy distribution over the frequency range (0 R O R 2.25) with the ®rst mode as the incident
wave is shown in Fig. 9a and that with the second mode as the incident wave in Fig. 9b. Upon
comparing Fig. 9a with Fig. 9b, it is seen that the re¯ected energy distributions in both cases for
frequencies below the third mode cut on frequency, i.e., that marked by the broken vertical line at
O 1 1.12, are reciprocals of each other. In other words, the amount of re¯ection energy in second mode
when excited by the ®rst mode as the incident wave is the same as that in the ®rst mode with the second
mode as the incident wave. Above the third mode cut on frequency, the re¯ected energy distributions
for these two cases are distinct.

Antisymmetric motions about the horizontal mid-plane include the torsional waves and ¯exural waves
about the x-axis, and both of these behaviors are coupled. Much of the antisymmetric behavior is the
complement of the symmetric behaviors. The frequency spectra are shown in Fig. 8. Following the same
labeling convention, the lowest two branches of the frequency spectra are denote as bend±tor and tor±
bend according to the predominant characteristics of each branch. All the antisymmetric higher modes
are numbered sequentially. Again, the lowest two modes were taken separately as incident waves, and
depending on the frequency one hundred to one hundred ®fty end modes were used in the calculation of

Fig. 8. Frequency spectra for three layer [+30/ÿ30/+30] composite material cylinder.
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the re¯ected motion. The re¯ected energy distributions for the normalized frequency range
(0 R O R 2.25) are shown in Fig. 10a (®rst mode as incident wave) and Fig. 10b (second mode). The
reciprocal nature of the re¯ected energies of these two modes below the frequency where the third mode
cuts on, i.e., that marked by broken vertical line O 1 1.76, at is again evinced as seen from these
®gures.

7.4. Two layer2308 ®ber composite rectangular bar

For a two layer rectangular bar with overall height-to-width ratio H=W � 1=2, the horizontal mid-

Fig. 9. Energy distributions of the symmetric motions in a three-layer [+30/ÿ30/+30] composite material cylinder.
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plane of the cross-section is an antisymmetry plane. This cross-section may also be considered to be
symmetric with respect to a p-rotation about the propagation axis (i.e., z-axis) through the centroid. The
mechanical properties of this cross-section are the same as those of the three layer beam, i.e., those
given by eqn (61). There exist two classes of motions in this cross-section, which may be regarded as
generalized rotationally symmetric and antisymmetric with respect to the p-rotation about the z-axis.
However, unlike the previous three layer cross-section, it does not appear possible to separate these two
behavioral classes with a model of one-half of the cross-section with appropriate interface conditions
along the entire horizontal mid-plane. Therefore, the entire cross-section was subdivided as shown in

Fig. 10. Energy distributions of the antisymmetric motions in a three-layer [+30/ÿ30/+30] composite material cylinder.
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Fig. 2. It is noted that any incident wave belonging to one class will not excite re¯ected motions of the
other class.

Frequency spectra for the lowest subset of propagating modes for these two classes of motions are
shown in Fig. 11. From the modal patterns of the lowest two modes for long wavelengths (i.e., small
normalized wave numbers) of the ®rst class (not presented here for brevity sake), it was observed that
they bear strong resemblance to extensional and torsional waves except that they are coupled in both
modes. However, strictly speaking they are not extensional nor torsional because their motions are not
completely symmetric or antisymmetric about the two cross-sectional coordinate planes. Similar remarks
can be made of the lowest two modes of the second class in that they appear to be coupled ¯exural
motions about two axes. However, for this cross-section, these two axes are not orthogonal to each
other; one is the x-axis and the other makes an angle of approximately 278 with the y-axis.

For the ®rst class motions, the re¯ected energy distribution for normalized frequency range
(0 R O R 2.1) due to the lowest mode as the incident wave is shown in Fig. 12a, and that with the
second wave as incident wave is shown in Fig. 12b. Analogues results for the second class motions over
the same frequency range are shown in Fig. 13a and 13b. For both classes, one hundred ®fty to two
hundred end modes were used depending on the frequency. The reciprocal nature of the energy
distributions at frequencies below the third lowest cut on frequency is again observed here for both
classes of motions, i.e., at frequencies of O 1 1.72 and O 1 1.07, respectively, for the ®rst and second

Fig. 11. Frequency spectra for two-layer [+30/ÿ30] composite material cylinder.
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classes. For frequencies above the third mode, there is considerable distinction in the re¯ected energies
with respect to which mode is taken as the incident wave.

8. Concluding remarks

The re¯ected motion due to a monochromatic incident wave striking a traction-free end of a cylinder
with an arbitrary cross-section was represented by a composition of traveling waves and end modes.
These modal data come from two eigenanalyses. The re¯ection analysis procedure satis®es traction-free

Fig. 12. Energy distributions of ®rst class motions in a two-layer [+30/ÿ30] composite material cylinder.
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ends and partitions the incident wave energy into the various re¯ected traveling waves. The four cross-
sections that were considered show the complicated nature in the energy distribution of the re¯ected
waves. To gain physical insight into the frequency dependent phenomena, a detailed study of all the
displacement and stress modal patterns must be undertaken.

It is mentioned that the re¯ection analysis did not considered mathematical singularities that are
present due to dissimilar materials at common interfaces. These singularities are generally weaker than
those of cracks. They will a�ect the near ®eld behavior at the free end of the cylinder and will alter the
energy distribution in the re¯ected waves as well as the participation of the various end modes.

Fig. 13. Energy distributions of second class motions in a three-layer [+30/ÿ30] composite material cylinder.
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Determining the quantitative nature of such singularities would be a worthwhile continuation of this
study, which should lead to a more complete understanding of the wave re¯ection phenomena.
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